Data Description: Data are NCEP values of effective atmospheric angular momentum functions as calculated from NCEP/NCAR reanalyses archived on pressure surfaces. The Transfer functions and Principal moments in Eubanks (1993) are employed to derive the atmospheric angular momentum functions (see Table 1 for several other choices). Table 1. Constants for Earth rotation/polar motion transfer. -------------------------------------------------------------------------------------- Authors chi1_P,Chi2_P chi1_W,Chi2_W chi3_P chi3_W moments omega Barnes et al.,1983 1.00/[omega(Cm-Am)] 1.43/[omega(Cm-Am)] 0.70/[omega*Cm] 1.00/[omega*Cm] Cm=7.04*10^37kg.m^2,Cm-Am=2.344*10^35kg.m^2 7.29*10^(-5)s^(-1) Eubanks,1993 1.098/[omega(C-A)] 1.5913/[omega(C-A)] 0.753/[omega*Cm] 0.998/[omega*Cm] Cm=7.1236*10^37kg.m^2,C-A=2.610*10^35kg.m^2 7.292115*10^(-5)s^(-1) Wahr,1982,1983 1.12/[omega(C-A)] 1.61/[omega(C-A)] 0.756/[omega*Cm] 1.00/[omega*Cm] Wahr,2004 1.11/[omega(C-A)] 1.57/[omega(C-A)] -------------------------------------------------------------------------------------- See also Dickman (2003) for four more formulations depending on fullness of core-mantle coupling and compressibility (Love numbers). Data are given four-times daily, and each epoch consists of a header record giving the date and time (year,month, day, hour), and data records. The line after the header contains 9 values of inverted barometer (IB) pressure (or, mass) terms, Non-IB pressure terms, wind (or, motion) terms of X1, X2 and X3, respectively. The wind terms are computed by integrating winds from the Earth surface to 10 hPa, the top of atmospheric model. Note that the inverted barometer correction involves applying the mean atmospheric surface pressure over the whole world ocean to every point over the world ocean. Each days data may be loaded into MATLAB directly, or may be read with the following FORTRAN code: read(lunit,100) iyear, imonth, iday, ihour, + AAMF_mass_IB_X, AAMF_mass_IB_Y, AAMF_mass_IB_Z, + AAMF_mass_NonIB_X, AAMF_mass_NonIB_Y, AAMF_mass_NonIB_Z, + AAMF_motion_X, AAMF_motion_Y, AAMF_motion_Z 100 format(13E16.7) To convert AAMF_X & Y into milliarcsecond (mas) and AAMF_Z into millisecond (ms), one needs to apply the following scale factors: AAMF_X & Y (in mas) = AAMF_X & Y *360*60*60*1000/(2*pi); AAMF_Z (in ms) = AAMF_Z * 24*60*60*1000; For more information about this data set, consult the following references. We ask that any use of this data in a published work refer to these articles. Salstein, D.A., D.M. Kann, A.J. Miller, R.D. Rosen, 1993: The Sub-bureau for Atmospheric Angular Momentum of the International Earth Rotation Service: A Meteorological Data Center with Geodetic Applications. Bull. Amer. Meteor. Soc., 74, 67-80. Salstein, D.A., and R.D. Rosen, 1997: Global momentum and energy signals from reanalysis systems. Preprints, 7th Conf. on Climate Variations, American Meteorological Society, Boston, MA, 344-348. Salstein, D.A., Y.H. Zhou, and J.L. Chen, 2005: Revised angular momentum datasets for atmospheric angular momentum studies, European Geophysical Union (EGU) Spring Meeting, Vienna, Austria. Zhou YH, Salstein DA, Chen JL, 2006: Revised atmospheric excitation function series related to Earth variable rotation under consideration of surface topography, J. Geophys. Res., 111, D12108, doi:10.1029/2005JD006608. For more information abot the NCEP/NCAR reanalysis project, consult the following: Kalnay, E., et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471. For more information about the calculations of atmospheric angular momentum functions, consult the following: Barnes, R. T. H., R. Hide, A. A. White, and C. A. Wilson, 1983: Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc. R. Soc. London, Ser. A, 387, 31-73.